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A Unified Differential Evolution Algorithm for
Global Optimization

Ji Qiang and Chad Mitchell

Abstract—In this paper, we propose a new unified differential
evolution (uDE) algorithm for single objective global optimiza-
tion. Instead of selecting among multiple mutation strategies as in
the conventional differential evolution algorithm, this algorithm
employs a single equation as the mutation strategy. It has the
virtue of mathematical simplicity and also provides users the
flexbility for broader exploration of different mutation strategies.
Numerical tests using twelve basic unimodal and multimodal
functions show promising performance of the proposed algorithm
in comparison to convential differential evolution algorithms.

Index Terms—differential evolution (DE), evolutionary opti-
mization.

I. I NTRODUCTION

Differential evolution is a simple yet efficient population-
based, stochastic, evolutionary algorithm. It was first intro-
duced by Storn and Price in 1995 as a global optimization
algorithm to optimize real parameter, real valued functions and
has received a lot of interest since then [1], [2], [3], [4], [6],
[7], [8]. In a number of comparison studies, the differential
evolution algorithm performed more efficiently than many
stochastic optimization methods such as simulated annealing,
controlled random search, evolutionary programming, the par-
ticle swarm method, and genetic algorithms [2], [9], [10], [11].
It has been successfully used in a variety of applications and
demonstrated its effectiveness.

The differential evolution algorithm uses the scaled differ-
ences of parent solutions as a mutation operator to generate
next-generation candidates for global optimization. In the
paper of Storn and Price, five different mutation strategies were
proposed [12]. Several additional variants of these mutation
strategies were later proposed to improve the properties of the
mutation operation, e.g. to make it rotationally invariant [13].
In this paper, we propose a unified differential evolution
algorithm for global optimization. This algorithm integrates
the various commonly-used mutation strategies into a single
expression. It is mathematically simpler than the conventional
algorithm with its multiple mutation strategies, and also pro-
vides users the flexibility to explore new combinations of
different mutation strategies during optimization.

The rest of the paper is organized as follows: in Section
2, the standard differential evolution algorithm with multiple
mutation strategies is reviewed. In Section 3, the unified
differential evolution agorithm is discussed. In Section 4,
numerical benchmarks with conventional mutation strategies
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are presented. A discussion and summary are given in Section
5.

II. STANDARD DIFFERENTIAL EVOLUTION ALGORITHM

The differential evolution algorithm starts with a population
initialization. A group ofNP solutions in the control parame-
ter space is randomly generated to form the initial population.
This initial population can be generated by sampling from a
uniform distribution within the parameter space if no prior
information about the optimal solution is available, or by
sampling from a known distribution (e.g., Gaussian) if some
prior information is available.

After initialization, the differential evolution algorithm up-
dates the population from one generation to the next gen-
eration until reaching a convergence condition or until the
maximum number of function evaluations is reached. At
each generation, the update step consists of three operations:
mutation, crossover, and selection. The mutation and the
crossover operations produce new candidates for the next
generation population and the selection operation is used to
select from among these candidates the appropriate solutions
to be included in the next generation.

A. Mutation Strategies

During the mutation operation stage, for each population
member (target vector)~xi, i = 1, 2, 3, · · · , NP at generation
G, a new mutant vector~vi is generated by following a mu-
tation strategy. Some commonly used conventional mutation
strategies are [1], [2], [7]:

DE/rand/1: ~vi = ~xr1 + Fxc(~xr2 − ~xr3) (1)

DE/rand/2: ~vi = ~xr1 + Fxc(~xr2 − ~xr3)

+Fxc(~xr4 − ~xr5) (2)

DE/best/1: ~vi = ~xb + Fxc(~xr1 − ~xr2) (3)

DE/best/2: ~vi = ~xb + Fxc(~xr1 − ~xr2)

+Fxc(~xr3 − ~xr4) (4)

DE/current-to-best/1: ~vi = ~xi + Fcr(~xb − ~xi)

+Fxc(~xr1 − ~xr2) (5)

DE/current-to-best/2: ~vi = ~xi + Fcr(~xb − ~xi)

+Fxc(~xr1 − ~xr2) + Fxc (~xr3 − ~xr4) (6)

DE/current-to-rand/1: ~vi = ~xi + Fcr(~xr1 − ~xi)

+Fxc (~xr2 − ~xr3) (7)
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DE/current-to-rand/2: ~vi = ~xi + Fcr(~xr1 − ~xi)

+Fxc (~xr2 − ~xr3) + Fxc (~xr4 − ~xr5) (8)

DE/rand-to-best/1: ~vi = ~xr1 + Fcr(~xb − ~xi)

+Fxc (~xr2 − ~xr3) (9)

DE/rand-to-best/2: ~vi = ~xr1 + Fcr(~xb − ~xi)

+Fxc(~xr2 − ~xr3) + Fxc(~xr4 − ~xr5) (10)

where the integersr1, r2, r3, r4 and r5 are chosen ran-
domly from the interval[1, NP ] and are different from the
current indexi, Fxc is a real scaling factor that controls
the amplification of the differential variation,~xb is the best
solution among theNP population members at the generation
G, and Fcr is a weight for the combination between the
original target vector and the best parent vector or the random
parent vector. The strategy DE/rand/1 is the most widely used
mutation strategy proposed in the original paper of Storn and
Price. It has stronger exploration capability but may converge
more slowly than the strategies that use the best solution
from the parent generation. The strategy DE/rand/2 uses two
difference vectors and may result in better perturbation than
the strategies that use one difference vector [14]. The strategies
DE/best/1 and DE/best/2 take advantage of the best solution
found in the parent population and have a faster convergence
towards the optimal solution [15]. However, they may become
stuck at a local minimum point during multimodal func-
tion optimization. The DE/current-to-best/1 and DE/current-to-
best/2 strategies provide a compromise between exploitation
of the best solution and exploration of the parameter space.
The DE/current-to-rand/1 and DE/current-to-rand/2 mutation
strategies are rotation-invariant strategies [13]. The DE/rand-
to-best/ strategies are similar to the DE/current-to-best/ strate-
gies, but larger diversity of the mutant vector is attained by
using a randomly selected parent vector instead of the current
target parent vector.

B. Crossover

A crossover operation between the new generated mutant
vector~vi and the target vector~xi is used to further increase
the diversity of the new candidate solution. This operation
combines the two vectors into a new trial vector~Ui, i =
1, 2, 3, · · · , NP , where the components of the trial vector are
obtained from the components of~vi or ~xi according to a
crossover probabilityCR. In the binomial crossover scheme,
for a D dimensional control parameter space, the new trial
vector ~Ui, i = 1, 2, · · · , NP is generated using the following
rule:

~Ui = (ui1, ui2, · · · , uiD) (11)

uij =

{

vij , if randj ≤ CR or j = mbri
xij , otherwise

(12)

where randj is a randomly chosen real number in the interval
[0, 1], and the index mbri is a randomly chosen integer in the
range[1, D]. This ensures that the new trial vector contains at
least one component from the new mutant vector.

C. Selection

The new generated trial solution~Ui is checked against the
boundary in the control parameter space. If the solution is
out of the boundary, a new trial solution is generated from a
random sampling within the boundary.

The selection operation in DE is based on a one-to-one
comparison. The new trial solution~Ui is checked against the
original target parent solution~xi. If the new trial solution
produces a better objective function value, it will be put into
the next generation (G+1) population. Otherwise, the original
parent is kept in the next generation population.

The above procedure is repeated for allNP parents to
generate the next generation population. Many generationsare
used to attain the final global optimal solution.

III. T HE UNIFIED DIFFERENTIAL EVOLUTION ALGORITHM

Ten different mutation strategies have been proposed for the
standard differential evolution algorithm (Eqs. 1-10). While
DE/rand/1/bin has been widely used, DE/best/1/bin was pro-
posed to have better performance in a number of optimization
test examples [15]. Meanwhile, DE/best/2/bin was suggested
as a highly beneficial method in the ICEC’96 contest [16].
In this paper, we propose a unified mutation strategy for the
differential evolution algorithm. The unified mutation strategy
can be written as:

~vi = ~xi + F1(~xb − ~xi) + F2(~xr1 − ~xi)

+F3(~xr2 − ~xr3) + F4(~xr4 − ~xr5) (13)

whereF1, F2, F3 and F4 are four parameters that can be
adpatively adjusted during the optimization process. Fromthe
above equation, one can see that forF1 = 0, F2 = 1, and
F4 = 0, this equation reduces to DE/rand/1; forF1 = 0,
F2 = 1, andF3 = F4, it reduces to DE/rand/2; forF1 = 1,
F2 = 0, andF4 = 0, it reduces to DE/best/1; forF1 = 1,
F2 = 0, andF3 = F4, it reduces to DE/best/2; forF2 = 0
andF4 = 0, it reduces to DE/current-to-best/1; forF2 = 0
andF3 = F4, it reduces to DE/current-to-best/2; forF1 = 0,
andF4 = 0, it reduces to DE/current-to-rand/1; forF1 = 0,
andF3 = F4, it reduces to DE/current-to-rand/2; forF2 = 1,
and F4 = 0, it reduces to DE/rand-to-best/1; forF2 = 1,
and F3 = F4, it reduces to DE/rand-to-best/2. Using the
single equation (13), ten mutation strategies in the standard
differential evolution algoritm can be written as a single
mutation strategy. Meanwhile, by using a different set of
parametersF1, F2, F3, F4, a combination of different strategies
can be achieved. For example, from our experience, we found
that usingF1 = 0.25, F2 = 0.25, F3 = 0.2, F4 = 0.2,
and CR = 0.8 in uDE can give reasonable performance
in a number of test studies. If these parameters can be
adaptively adjusted during the optimization evolution, then
multiple mutation strategies and their combinations can be
used during different stages of optimization. Thus, the unified
strategy has the virtue of mathematical simplicity and also
provides the user with flexibility for broader exploration of
different mutation strategies.

In the following, we also propose a simple adaptive method
for uDE (called uDEadapt) so that the user does not have
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to specify the five parameters (F1, F2, F3, F4, CR) prior to
optimization. In this adaptive uDE scheme, after the population
initialization, the five parameters are randomly generatedfol-
lowing a uniform distribution in the interval[0, 1], and the mu-
tation strategy (13) is used to produce new trial solutions for
the next generation. If the best solution in the new generation is
better than the best solution of the parent generation, thisgroup
of control parameters is put into a successful pool and these
parameters are reused to produce another generation of trial
solutions. If the best solution of the current parent generation is
not improved, these five control parameters will be discarded.
A new set of control parameters are then generated from either:
1) a uniform sampling within[0, 1] with probability0.5, or 2)
a random choice from the parameters stored in the successful
pool, provided the pool is not empty. This process is repeated
for many generations until obtaining the maximum allowed
number of function evaluations or convergence to the optimal
solution.

IV. NUMERICAL BENCHMARK

A. Test functions

Twelve well-known test functions that have been widely
used in studies of global optimization in evolutionary compu-
tation are used in this paper for numerical benchmarking [10],
[11], [15], [17], [18]. These functions are given below:

(1) Sphere function

Fsph(~x) =

N
∑

i=1

x2
i ; −100 ≤ xi ≤ 100;

(2) Schwefel’s problem 1.2

Fsch2(~x) =

N
∑

j=1

(

j
∑

i=1

xi

)2

; −100 ≤ xi ≤ 100;

(3) Quartic function with noise

Fqrt(~x) =

N
∑

i=1

ix4
i + rand[0, 1); −1.28 ≤ xi ≤ 1.28;

(4) Rosenbrock’s function

Fros(~x) =
N−1
∑

i=1

(

100(xi+1 − x2
i )

2 + (1− xi)
2
)

;

− 100 ≤ xi ≤ 100;

(5) Ackley’s function

Fack(~x) = 20 + exp(1)− 20 exp



−0.2

√

√

√

√

1

N

N
∑

i=1

x2
i





− exp

(

1

N

N
∑

i=1

cos(2πxi)

)

; −32 ≤ xi ≤ 32;

(6) Griewank’s function

Fgrw(~x) =

N
∑

i=1

x2
i

4000
−

N
∏

i=1

cos
xi√
i
+ 1;

− 600 ≤ xi ≤ 600;

(7) Rastrigin’s function

Fras(~x) = 10N +

N
∑

i=1

(

x2
i − 10 cos(2πxi)

)

;

− 5 ≤ xi ≤ 5;

(8) Schwefel’s function

Fsch(~x) = 418.9829N −
N
∑

i=1

(xi sin(
√

|xi|));

− 500 ≤ xi ≤ 500;

(9) Salomon’s function

Fsal(~x) = − cos



2π

√

√

√

√

N
∑

i=1

x2
i





+ 0.1

√

√

√

√

N
∑

i=1

x2
i + 1; −100 ≤ xi ≤ 100;

(10) Whitely’s function

Fwht(~x) =

N
∑

j=1

N
∑

i=1

(

y2i,j

4000
− cos(yi,j) + 1

)

;

whereyi,j = 100(xj − x2
i )

2 + (1− xi)
2;

− 100 ≤ xi ≤ 100;

(11) Weierstrass’s function

Fwst(~x) =
N
∑

i=1

w(xi, 0.5, 3, 20)−Nw(0, 0.5, 3, 20);

where

w(xi, a, b,m) =

m
∑

k=0

ak cos(2πbk(xi + 0.5));

− 0.5 ≤ xi ≤ 0.5;

(12) Generalized penalized function

Fpn1(~x) =
π

N

{

10 sin2(πy1) +

N−1
∑

i=1

(yi − 1)2[1

+10 sin2(πyi+1)] + (yN − 1)2
}

+
N
∑

i=1

u(xi, 10, 100, 4);

whereyi = 1 +
1

4
(xi + 1) and

u(xi,a, k,m)

=











k(xi − a)m, xi > ai

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a.

− 50 ≤ xi ≤ 50;

The sphere function is a continuous, unimodal and separable
function. The Schewefel’s problem 1.2 is a non-separable
unimodal function. The noisy quartic function is a unimodal
non-separable function with random noise in the objective
value. The Rosenbrock’s function with dimension greater
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than three is a multimodal and non-separable problem. The
global minimum lies inside a parabolic shaped flat valley. The
Ackely’s function is also a multimodal non-separable problem
and has many local minima and a narrow global minimum.
The Rastrigin’s function is a complex multimodal separable
problem with many local minima. The Griewank’s func-
tion is a multimodal non-separable function. The Salomon’s
function and the Whitely’s function are non-separable and
highly multmodal with many local minima. The Weierstrass
function is a multimodal, nonseparable continuous function
that is differentiable only on a set of points. The generalized
penalized funtion is a multimodal nonseparable irregular and
discontinuous function. The number of local minima from test
functions (5) to (12) increases quickly with the problem di-
mension. The exact global minimum for all of these problems
is achieved for an objective function value of zero.

B. Benchmark results

To test the proposed uDE algorithms, we carried out numer-
ical optimization using the 12 benchmark objective functions
listed in the above subsection with dimensionsN = 10,
30, and 50 respectively. We compare the proposed uDE
algorithms with two widely used conventional DE algorithms,
DE/rand/1/bin (F = 0.9, CR = 0.9) [2], [19], DE/rand/1/bin
(F = 0.5, CR = 0.9) [10], [11], [15], and DE/best/1/bin
(F = 0.6, CR = 0.3) [15]. The parameters used in uDE
are given in Section III (F1 = 0.25, F2 = 0.25, F3 = 0.2,
F4 = 0.2, andCR = 0.8). The choice of these parameters
is based on the consideration of a balance between the ex-
ploitation of the best solution found in the current population,
the exploration of the random solution, and the current target
solution. The scale factors for the two difference vector and
the crossover probability are chosen to increase the speed of
convergence. The simple adaptive uDE (uDEadapt) algorithm
is also used in the benchmark tests. The maximum number
of function evalutions is set as10, 000N . The population size
(NP ) for the 10, 30, and50 dimensional problems is set as
50, 60, and100, respectively. Each optimization is performed
for 25 different random seeds. The average objective function
value and its standard deviation at the end of the maximum
number of function evaluations is reported in Table I for
each of the10 dimensional objective functions, in Table II
for the 30 dimensional functions, and in Table III for the
50 dimensional functions. The minimum average objective
value for each problem is shown in bold font. It is seen that
among the conventional differential evolution algorithms, the
algorithm DE/best/1/bin performs better than DE/rand/1/bin
with either F = 0.9, CR = 0.9 or F = 0.5, CR = 0.9.
The performance of the conventional differential evolution
algorithm DE/rand/1/bin is quite sensitive to the choice ofthe
scaling parameterF . The use ofF = 0.5 for DE/rand/1/bin
shows better performance than the case withF = 0.9. In the
numerical tests with ten dimensional objective functions,the
conventional DEs perform better than the uDEs in eight out
of 12 test examples. There are still two examples in which
the uDEs outperform the convential DE algorithms. In the
tests with 30 dimensional objective functions, the conventional

DEs win six out of the 12 test examples. The uDEs win five
out of the 12 test examples. In the tests with 50 dimensional
objective functions, the conventional DEs win four out of 12
test examples, and the unified DEs win seven out the 12 test
examples. From these test problems, it appears that the uDEs
perform better with increasing problem dimension. This might
be due to the balance of exploitation and exploration in the
uDEs with combined mutation strategies.

In Figs. 1 and 2, we show the evolution of the objective
function value of the 12 test functions for the algorithms shown
in Table III with dimensionN = 50. At each generation, the
objective function value has been averaged over 25 random
seeds. It is seen that the unified differential algorithms perform
quite well in most test examples to reach converged solutions.
The adaptive uDE algorithm (uDEadapt) does not have the fast
convergence rate of uDE, but proves more robust in finding the
optimal solutions in Rosenbrock’s function and in Whitely’s
function by adjusting the five control parameters during the
optimization.

V. D ISCUSSION ANDSUMMARY

In this paper, we proposed a unified mutation strategy
for the differential evolution algorithm. In comparison tothe
standard differential evolution algorithm, this method has the
advantages of both mathematical simplicity and flexibilityfor
exploring broader mutation strategies. The disadvantage of
this algorithm is that it involves more control parameters.
Instead of three control parameters,Fcr, Fxc and CR, as
in the conventional DE, the unified DE has five control
parameters,F1, F2, F3, F4 andCR. The performance of the
algorithm will depend on the choice of these parameters. In
this study, we suggested a simple adaptive scheme to select a
set of control parameters for the whole population. In previous
studies, a number of adaptive methods have been proposed
to determine the control parameters and the combination of
mutation strategy and control parameters [10], [11], [14],[20],
[22], [23], [24]. These more sophisticated adaptive methods
involve using a set of control parameters for each individual
solution in the population. In future work, we will explore
how these more advanced adaptive methods can be used to
improve the performance of the proposed unified differential
evolution algorithm.
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENTDE STRATEGIES FORN = 10.

Function
rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) uDE uDEadapt
Mean Std Mean Std Mean Std Mean Std Mean Std

Fsph 2.54E-13 2.35E-13 2.88E-83 5.42E-83 3.73E-94 1.14E-93 3.07E-79 1.44E-78 4.62E-69 2.26E-68
Fsch2 7.62E-06 5.12E-06 1.13E-53 1.42E-53 4.79E-13 5.40E-13 3.74E-52 9.40E-52 1.66E-26 8.14E-26
Fqrt 8.15E-03 2.79E-03 8.15E-04 3.64E-04 6.80E-04 2.25E-04 5.96E-05 3.15E-05 3.78E-04 2.26E-04
Fros 1.08E-03 8.00E-04 3.08E+00 1.24E+00 1.78E+00 2.90E+00 5.66E+00 3.84E+00 9.61E-01 2.21E+00
Fack 3.26E-07 1.62E-07 3.00E-15 6.96E-16 2.97E-15 6.96E-16 2.54E-15 1.30E-15 -4.44E-16 0.00E+00
Fgrw 2.10E-01 1.46E-01 1.56E-02 1.25E-02 0.00E+00 0.00E+00 8.88E-18 4.35E-17 1.11E-04 5.42E-04
Fras 8.88E+00 6.11E+00 7.64E-01 8.57E-01 3.19E-46 1.07E-45 2.83E-06 1.37E-05 5.91E-25 2.19E-24
Fsch 2.58E+01 9.18E+01 1.27E-04 3.15E-12 6.12E-04 5.59E-04 4.23E+02 4.42E+02 4.64E-02 5.28E-02
Fsal 1.07E-01 1.05E-02 9.99E-02 1.86E-09 9.99E-02 3.87E-10 9.99E-02 0.00E+00 9.99E-02 2.95E-09
Fwht 3.88E+01 1.70E+01 1.26E+01 1.36E+01 2.97E-01 6.45E-01 1.84E+00 7.17E-01 2.78E+00 2.75E+00
Fwst 2.52E-03 7.86E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Fpn1 2.04E-13 1.89E-13 4.71E-32 0.00E+00 7.63E-08 5.46E-08 2.69E-06 2.53E-06 6.15E-08 8.75E-08

TABLE II
PERFORMANCE COMPARISON OF DIFFERENTDE STRATEGIES FORN = 30.

Function
rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) uDE uDEadapt
Mean Std Mean Std Mean Std Mean Std Mean Std

Fsph 1.19E+00 8.96E-01 1.35E-71 1.84E-71 2.29E-50 3.85E-50 1.19E-35 1.56E-35 1.17E-25 5.27E-25
Fsch2 4.10E+03 1.93E+03 4.95E-12 6.41E-12 1.84E+00 6.71E-01 1.17E-09 1.28E-09 2.58E-05 4.43E-05
Fqrt 6.73E-02 1.82E-02 2.25E-03 4.84E-04 2.55E-03 7.63E-04 7.96E-05 2.80E-05 5.20E-04 2.50E-04
Fros 2.44E+03 1.92E+03 1.28E+01 9.19E+00 3.11E+00 5.35E+00 3.57E+00 7.19E+00 2.09E-14 6.77E-14
Fack 6.32E-01 3.79E-01 3.68E-15 1.30E-15 4.53E-15 1.74E-15 3.11E-15 0.00E+00 5.54E-13 2.13E-12
Fgrw 8.31E-01 1.38E-01 5.92E-04 2.01E-03 0.00E+00 0.00E+00 8.88E-18 3.01E-17 1.33E-17 3.61E-17
Fras 1.27E+02 3.72E+01 1.22E+01 4.11E+00 2.58E-22 4.43E-22 4.26E-16 7.59E-16 7.63E-03 3.64E-02
Fsch 5.79E+03 1.40E+03 7.16E+02 7.96E+02 3.82E-04 7.28E-12 1.48E+03 2.45E+03 2.43E-01 7.37E-01
Fsal 1.57E+00 2.41E-01 1.82E-01 3.66E-02 1.64E-01 4.80E-02 9.99E-02 0.00E+00 9.99E-02 1.73E-10
Fwht 7.04E+06 3.17E+07 2.71E+02 1.42E+02 1.32E+01 2.33E+01 1.96E+00 4.61E+00 8.40E-30 3.35E-29
Fwst 2.12E+00 7.44E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.79E-10 1.84E-09
Fpn1 2.29E-01 2.89E-01 4.15E-03 2.03E-02 1.57E-32 4.86E-40 3.28E-23 1.12E-22 1.64E-17 4.07E-17

TABLE III
PERFORMANCE COMPARISON OF DIFFERENTDE STRATEGIES FORN = 50.

Function
rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) uDE uDEadapt
Mean Std Mean Std Mean Std Mean Std Mean Std

Fsph 2.85E+03 9.21E+02 4.84E-35 8.77E-35 7.90E-38 4.48E-38 3.32E-34 3.58E-34 5.11E-23 2.45E-22
Fsch2 7.35E+04 5.83E+03 1.28E+00 4.69E-01 6.76E+02 2.50E+02 2.06E-06 3.47E-06 1.06E-03 1.19E-03
Fqrt 1.43E+00 8.18E-01 6.34E-03 1.18E-03 3.93E-03 9.42E-04 9.07E-05 3.70E-05 4.89E-04 2.14E-04
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